Prof. Ph.D. Mathias Drton

Technische Universität München

Lehrstuhl für Mathematische Statistik (Prof. Drton)

Research interests

  • Graphical models
  • Algebraic statistics
  • Model selection
  • Causal inference
  • Multivariate data more broadly

Research profile

Publications

Suche
Kein Ergebnis

Hinweis: Die „Schnellsuche“ findet nur Text in den angezeigten Feldern; nicht in Abstracts oder Schlagwörtern. Der Suchbegriff muss mindestens 3 Buchstaben lang sein.

2025

  • Shi, Hongjian; Drton, Mathias; Hallin, Marc; Han, Fang: Distribution-free tests of multivariate independence based on center-outward quadrant, Spearman, Kendall, and van der Waerden statistics. Bernoulli 31 (1), 2025, 106–129 mehr… Volltext ( DOI )

2024

  • Dettling, Philipp; Drton, Mathias; Kolar, Mladen: On the Lasso for Graphical Continuous Lyapunov Models. Proceedings of Machine Learning Research , 2024Third Conference on Causal Learning and Reasoning, 514-550 mehr…
  • Drton, Mathias; Grosdos, Alexandros; McCormack, Andrew: Rational maximum likelihood estimators of Kronecker covariance matrices. Algebraic Statistics 15 (1), 2024, 145-164 mehr… Volltext ( DOI )
  • Göbler, Konstantin; Drton, Mathias; Mukherjee, Sach; Miloschewski, Anne: High-dimensional undirected graphical models for arbitrary mixed data. Electronic Journal of Statistics 18 (1), 2024, 2339–2404 mehr… Volltext ( DOI )
  • Göbler, Konstantin; Windisch, Tobias; Drton, Mathias; Pychynski, Tim; Roth, Martin; Sonntag, Steffen: causalAssembly: Generating Realistic Production Data for Benchmarking Causal Discovery. Proceedings of Machine Learning Research, 2024Third Conference on Causal Learning and Reasoning, 609--642 mehr…
  • Shi, Hongjian; Drton, Mathias; Han, Fang: On Azadkia–Chatterjee’s conditional dependence coefficient. Bernoulli 30 (2), 2024, 851-877 mehr… Volltext ( DOI )
  • Strieder, David; Drton, Mathias: Dual Likelihood for Causal Inference under Structure Uncertainty. Proceedings of Machine Learning Research, 2024Third Conference on Causal Learning and Reasoning, 1-17 mehr…
  • Sturma, Nils; Drton, Mathias; Leung, Dennis: Testing many constraints in possibly irregular models using incomplete U-statistics. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2024, 1--26 mehr… Volltext ( DOI )
  • Yu, Shiqing; Drton, Mathias; Shojaie, Ali: Interaction Models and Generalized Score Matching for Compositional Data. Proceedings of Machine Learning Research, 2024The 2nd Learning on Graphs Conference , 1-25 mehr…

2023

  • Améndola, Carlos; Drton, Mathias; Grosdos, Alexandros; Homs, Roser; Robeva, Elina: Third-order moment varieties of linear non-Gaussian graphical models. Information and Inference: A Journal of the IMA 12 (3), 2023, 1405–1436 mehr… Volltext ( DOI )
  • Chen, Wenyu; Drton, Mathias; Shojaie, Ali: Causal Structural Learning via Local Graphs. SIAM Journal on Mathematics of Data Science 5 (2), 2023, 280-305 mehr… Volltext ( DOI )
  • Dettling, Philippp; Homs, Roser; Améndola, Carlos; Drton, Mathias; Hansen, Niels Richard: Identifiability in Continuous Lyapunov Models. SIAM Journal on Matrix Analysis and Applications 44 (4), 2023, 1799-1821 mehr… Volltext ( DOI )
  • Drton, Mathias; Kahle, Thomas; Sullivant, Seth; Uhler, Caroline: Algebraic Structures in Statistical Methodology. Oberwolfach Reports 19 (4), 2023, 3121-3170 mehr… Volltext ( DOI )
  • Drton, Mathias; Shi, Hongjian; Strieder, David: Discussion of “A note on universal inference” by Timmy Tse and Anthony Davison. Stat 12 (1), 2023 mehr… Volltext ( DOI )
  • Keropyan, Grigor; Strieder, David; Drton, Mathias: Rank-Based Causal Discovery for Post-Nonlinear Models. Proceedings of Machine Learning Research, MLResearchPress, 202326th International Conference on Artificial Intelligence and Statistics mehr…
  • Rusek, Krzysztof; Drton, Mathias: Fine-grained Network Traffic Prediction from Coarse Data. Austrian Journal of Statistics 52 (3), 2023, 114-123 mehr… Volltext ( DOI )
  • Strieder, David; Drton, Mathias: Confidence in causal inference under structure uncertainty in linear causal models with equal variances. Journal of Causal Inference 11 (1), 2023 mehr… Volltext ( DOI )
  • Sturma, Nils; Squires, Chandler; Drton, Mathias; Uhler, Caroline: Unpaired Multi-Domain Causal Representation Learning. Advances in Neural Information Processing Systems 36, 202337th Annual Conference on Neural Information Processing Systems (NeurIPS 2023) , 34465--34492 mehr…
  • Tramontano, Daniele; Waldmann, Leonard; Drton, Mathias; Duarte, Eliana .: Learning Linear Gaussian Polytree Models With Interventions. IEEE Journal on Selected Areas in Information Theory 4, 2023, 569-578 mehr… Volltext ( DOI )
  • Wang, Y. Samuel; Drton, Mathias: Causal Discovery with Unobserved Confounding and Non-Gaussian Data. Journal of Machine Learning Research 24 (271), 2023, 1−61 mehr… Volltext ( DOI )
  • Wu, Jun; Drton, Mathias: Partial Homoscedasticity in Causal Discovery with Linear Models. IEEE Journal on Selected Areas in Information Theory, 2023, 639 - 650 mehr… Volltext ( DOI )
  • Yu, Shiqing; Drton, Mathias; Shojaie, Ali: Directed Graphical Models and Causal Discovery for Zero-Inflated Data. Proceedings of Machine Learning Research, ML Research Press, 2023Proceedings of the Second Conference on Causal Learning and Reasoning, 27-67 mehr…
  • Zamanian, Alireza; Ahmidi, Narges; Drton, Mathias: Assessable and interpretable sensitivity analysis in the pattern graph framework for nonignorable missingness mechanisms. Statistics in Medicine 42 (29), 2023, 5419-5450 mehr… Volltext ( DOI )

2022

  • Barber, Rina Foygel; Drton, Mathias; Sturma, Nils; Weihs, Luca: Half-trek criterion for identifiability of latent variable models. The Annals of Statistics 50 (6), 2022 mehr… Volltext ( DOI )
  • Shi, Hongjian; Drton, Mathias; Han, Fang: Distribution-Free Consistent Independence Tests via Center-Outward Ranks and Signs. Journal of the American Statistical Association 117 (537), 2022, 395-410 mehr… Volltext ( DOI )
  • Shi, Hongjian; Drton, Mathias; Han, Fang: On the power of Chatterjee’s rank correlation. Biometrika 109 (2), 2022, 317-333 mehr… Volltext ( DOI )
  • Shi, Hongjian; Hallin, Marc; Drton, Mathias; Han, Fang: On universally consistent and fully distribution-free rank tests of vector independence. The Annals of Statistics 50 (4), 2022, 1933-1959 mehr… Volltext ( DOI )
  • Strieder, David; Drton, Mathias: On the choice of the splitting ratio for the split likelihood ratio test. Electronic Journal of Statistics 16 (2), 2022, 6631-6650 mehr… Volltext ( DOI )
  • Tramontano, Daniele; Monod, Anthea; Drton, Mathias: Learning linear non-Gaussian polytree models. Proceedings of Machine Learning Research , MLResearchPress , 2022Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022), 1960-1969 mehr…
  • Yu, Shiqing; Drton, Mathias; Shojaie, Ali: Generalized score matching for general domains. Information and Inference: A Journal of the IMA 11 (2), 2022, 739-780 mehr… Volltext ( DOI )
  • van Ommen, Thijs; Drton, Mathias: Graphical Representations for Algebraic Constraints of Linear Structural Equations Models. Proceedings of Machine Learning Research, MLResearchPress , 2022Proceedings of The 11th International Conference on Probabilistic Graphical Models, 409-420 mehr…

2021

  • Chen, Wenyu; Drton, Mathias; Shojaie, Ali: Definite Non-Ancestral Relations and Structure Learning. 8th Causal Inference Workshop at UAI (causalUAI 2021), 2021 mehr…
  • Drton, Mathias; Kuriki, Satoshi; Hoff, Peter: Existence and uniqueness of the Kronecker covariance MLE. The Annals of Statistics 49 (5), 2021, 2721-2754 mehr… Volltext ( DOI )
  • Strieder, David; Freidling, Tobias; Haffner, Stefan; Drton, Mathias: Confidence in causal discovery with linear causal models. Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence, 2021, 1217-1226 mehr…
  • Yu, Shiqing; Drton, Mathias; Promislow, Daniel E. L.; Shojaie, Ali: CorDiffViz: an R package for visualizing multi-omics differential correlation networks. BMC Bioinformatics 22 (1), 2021, 1-12 mehr… Volltext ( DOI )

2020

  • Amendola, C., Dettling, P., Drton, M., Onori,F.; Wu, J.: Structure Learning for Cyclic Linear Causal Models. Proceedings of Machine Learning Research (PMLR) 124, 2020, 999-1008 mehr…
  • Drton, Mathias; Han, Fang; Shi, Hongjian: High-dimensional consistent independence testing with maxima of rank correlations. Annals of Statistics 48 (6), 2020, 3206-3227 mehr… Volltext ( DOI )
  • Drton, Mathias; Robeva, Elina; Weihs, Luca: Nested covariance determinants and restricted trek separation in Gaussian graphical models. Bernoulli 26 (4), 2020, 2503-2540 mehr… Volltext ( DOI )
  • Jin, Kelly; Wilson, Kenneth A.; Beck, Jennifer N.; Nelson, Christopher S.; Brownridge, George W.; Harrison, Benjamin R.; Djukovic, Danijel; Raftery, Daniel; Brem, Rachel B.; Yu, Shiqing; Drton, Mathias; Shojaie, Ali; Kapahi, Pankaj; Promislow, Daniel: Genetic and metabolomic architecture of variation in diet restriction-mediated lifespan extension in Drosophila. PLOS Genetics 16 (7), 2020, e1008835 mehr… Volltext ( DOI )
  • Lin, Lina; Drton, Mathias; Shojaie, Ali: Statistical Significance in High-dimensional Linear Mixed Models. Proceedings of the 2020 ACM-IMS on Foundations of Data Science Conference, Association for Computing Machinery, 2020, 171-181 mehr… Volltext ( DOI )
  • Wang, Y Samuel; Drton, Mathias: High-dimensional causal discovery under non-Gaussianity. Biometrika 107 (1), 2020, 41–59 mehr… Volltext ( DOI )

2019

  • Chen, Wenyu; Drton, Mathias; Wang, Y Samuel: On causal discovery with an equal-variance assumption. Biometrika 106 (4), 2019, 973-980 mehr… Volltext ( DOI )
  • Drton, Mathias; Fox, Christopher; Käufl, Andreas; Pouliot, Guillaume: The maximum likelihood threshold of a path diagram. The Annals of Statistics 47 (3), 2019, 1536-1553 mehr… Volltext ( DOI )
  • Drton, Mathias; Fox, Christopher; Wang, Y. Samuel: Computation of maximum likelihood estimates in cyclic structural equation models. The Annals of Statistics 47 (2), 2019, 663-690 mehr… Volltext ( DOI )
  • McDavid, Andrew; Gottardo, Raphael; Simon, Noah; Drton, Mathias: Graphical models for zero-inflated single cell gene expression. The Annals of Applied Statistics 13 (2), 2019, 848-873 mehr… Volltext ( DOI )
  • Yu, Shiqing; Drton, Mathias; Shojaie, Ali: Generalized Score Matching for Non-Negative Data. Journal of Machine Learning Research 20 (76), 2019, 1-70 mehr…

2018

  • Drton, Mathias: Algebraic problems in structural equation modeling. Advanced Studies in Pure Mathematics, Mathematical Society of Japan, 2018The 50th Anniversary of Gröbner Bases, 35-86 mehr… Volltext ( DOI )
  • Drton, Mathias, Kahle, Thomas, Sturmfels, Bernd, and Uhler, Caroline: Algebraic Statistics. Oberwolfach Reports 14 (2), 2018, 1207-1279 mehr… Volltext ( DOI )
  • Katayama, Shota; Fujisawa, Hironori; Drton, Mathias: Robust and sparse Gaussian graphical modelling under cell-wise contamination. Stat 7 (1), 2018, e181 mehr… Volltext ( DOI )
  • Leung, Dennis; Drton, Mathias: Algebraic tests of general Gaussian latent tree models. Advances in Neural Information Processing Systems 31 31, 2018, 6301-6310 mehr…
  • Leung, Dennis; Drton, Mathias: Testing independence in high dimensions with sums of rank correlations. The Annals of Statistics 46 (1), 2018, 280-307 mehr… Volltext ( DOI )
  • Weihs, Luca; Drton, Mathias; Meinshausen, Nicolai: Symmetric rank covariances: a generalized framework for nonparametric measures of dependence. Biometrika 105 (3), 2018, 547-562 mehr… Volltext ( DOI )
  • Weihs, Luca; Robinson, Bill; Dufresne, Emilie; Kenkel, Jennifer; Kubjas, Kaie; McGee II, Reginald, Nguyen, Nhan; Robeva, Elina; Drton, Mathias: Determinantal Generalizations of Instrumental Variables. Journal of Causal Inference 6 (1), 2018 mehr… Volltext ( DOI )
  • Yu, Shiqing; Drton, Mathias; Shojaie, Ali: Graphical Models for Non-Negative Data Using Generalized Score Matching. Proceedings of Machine Learning Research 84, 2018, 1781-1790 mehr…

2017

  • Drton, Mathias and Maathuis, Marloes H.: Structure Learning in Graphical Modeling. Annual Review of Statistics and Its Application 4 (1), 2017, 365-393 mehr… Volltext ( DOI )
  • Drton, Mathias; Lin, Shaowei; Weihs, Luca; Zwiernik, Piotr: Marginal likelihood and model selection for Gaussian latent tree and forest models. Bernoulli 23 (2), 2017, 1202-1232 mehr… Volltext ( DOI )
  • Drton, Mathias; Plummer, Martyn: A Bayesian information criterion for singular models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 79 (2), 2017, 323-380 mehr… Volltext ( DOI )
  • Keller, Joshua P.; Drton, Mathias; Larson, Timothy; Kaufman, Joel D.; Sandler, Dale P.; Szpiro, Adam A.: Covariate-adaptive clustering of exposures for air pollution epidemiology cohorts. The Annals of Applied Statistics 11 (1), 2017, 93-113 mehr… Volltext ( DOI )
  • Wang, Y. Samuel; Drton, Mathias: Empirical likelihood for linear structural equation models with dependent errors. Stat 6 (1), 2017, 434-447 mehr… Volltext ( DOI )

2016

  • Améndola, Carlos; Drton, Mathias; Sturmfels, Bernd: Maximum Likelihood Estimates for Gaussian Mixtures Are Transcendental. In: Mathematical Aspects of Computer and Information Sciences. Springer International Publishing, 2016, 579-590 mehr… Volltext ( DOI )
  • Barber, Rina Foygel; Drton, Mathias; Tan, Kean Ming: Laplace Approximation in High-Dimensional Bayesian Regression. In: Statistical Analysis for High-Dimensional Data. Springer International Publishing, 2016, 15-36 mehr… Volltext ( DOI )
  • Drton, Mathias; Weihs, Luca: Generic Identifiability of Linear Structural Equation Models by Ancestor Decomposition. Scandinavian Journal of Statistics 43 (4), 2016, 1035-1045 mehr… Volltext ( DOI )
  • Drton, Mathias; Xiao, Han: Wald tests of singular hypotheses. Bernoulli 22 (1), 2016, 38-59 mehr… Volltext ( DOI )
  • Leung, Dennis; Drton, Mathias: Order-invariant prior specification in Bayesian factor analysis. Statistics & Probability Letters 111, 2016, 60-66 mehr… Volltext ( DOI )
  • Leung, Dennis; Drton, Mathias; Hara, Hisayuki: Identifiability of directed Gaussian graphical models with one latent source. Electronic Journal of Statistics 10 (1), 2016, 394-422 mehr… Volltext ( DOI )
  • Lin, Lina; Drton, Mathias; Shojaie, Ali: Estimation of high-dimensional graphical models using regularized score matching. Electronic Journal of Statistics 10 (1), 2016, 806-854 mehr… Volltext ( DOI )
  • Nandy, Preetam; Weihs, Luca; Drton, Mathias: Large-sample theory for the Bergsma-Dassios sign covariance. Electronic Journal of Statistics 10 (2), 2016, 2287-2311 mehr… Volltext ( DOI )
  • Weihs, Luca; Drton, Mathias; Leung, Dennis: Efficient computation of the Bergsma–Dassios sign covariance. Computational Statistics 31 (1), 2016, 315-328 mehr… Volltext ( DOI )

2015

  • Barber, Rina Foygel; Drton, Mathias: High-dimensional Ising model selection with Bayesian information criteria. Electronic Journal of Statistics 9 (1), 2015, 567-607 mehr… Volltext ( DOI )
  • Drton, Mathias; Lim, Lek-Heng; Wu, Wei Biao: Preface to the Special Issue on Statistics. Linear Algebra and its Applications 473, 2015, 1-2 mehr… Volltext ( DOI )
  • Fox, Christopher J.; Käufl, Andreas; Drton, Mathias: On the causal interpretation of acyclic mixed graphs under multivariate normality. Linear Algebra and its Applications 473, 2015, 93-113 mehr… Volltext ( DOI )
  • Kwok, Heemun; Coult, Jason; Drton, Mathias; Rea, Thomas D.; Sherman, Lawrence: Adaptive rhythm sequencing: A method for dynamic rhythm classification during CPR. Resuscitation 91, 2015, 26-31 mehr… Volltext ( DOI )

2014

  • Finegold, Michael; Drton, Mathias: Robust Bayesian Graphical Modeling Using Dirichlet $t$ -Distributions. Bayesian Analysis 9 (3), 2014, 521-550 mehr… Volltext ( DOI )
  • Finegold, Michael; Drton, Mathias: Rejoinder. Bayesian Analysis 9 (3), 2014, 591-596 mehr… Volltext ( DOI )

2013

  • Foygel, Rina; Horrell, Michael; Drton, Mathias; Lafferty, John D.: Nonparametric Reduced Rank Regression. Advances in Neural Information Processing Systems 25 25, 2013, 1628-1636 mehr…
  • Harris, Naftali; Drton, Mathias: PC Algorithm for Nonparanormal Graphical Models. Journal of Machine Learning Research 14 (1), 2013, 3365-3383 mehr… Volltext ( DOI )

2012

  • Drton, Mathias (as part of the ‘DREAM5 Consortium’): Wisdom of crowds for robust gene network inference. Nature Methods 9, 2012, 796-804 mehr… Volltext ( DOI )
  • Drton, Mathias; Fox, Chris; Käufl, Andreas: Comments on: Sequences of regressions and their independencies. TEST 21 (2), 2012, 255-261 mehr… Volltext ( DOI )
  • Drton, Mathias; Goia, Aldo: Correction on Moments of minors of Wishart matrices. The Annals of Statistics 40 (2), 2012, 1283-1284 mehr… Volltext ( DOI )
  • Foygel, Rina; Draisma, Jan; Drton, Mathias: Half-trek criterion for generic identifiability of linear structural equation models. The Annals of Statistics 40 (3), 2012, 1682-1713 mehr… Volltext ( DOI )
  • Gross, Elizabeth; Drton, Mathias; Petrović, Sonja: Maximum likelihood degree of variance component models. Electronic Journal of Statistics 6, 2012, 993-1016 mehr… Volltext ( DOI )
  • Kedzierska, Anna M.; Drton, Mathias; Guigo, Roderic; Casanellas, Marta: SPIn: Model Selection for Phylogenetic Mixtures via Linear Invariants. Molecular Biology and Evolution 29 (3), 2012, 929-937 mehr… Volltext ( DOI )

2011

  • Drton, Mathias; Foygel, Rina; Sullivant, Seth: Global identifiability of linear structural equation models. The Annals of Statistics 39 (2), 2011, 865-886 mehr… Volltext ( DOI )
  • Drton, Mathias; Williams, Benjamin: Quantifying the failure of bootstrap likelihood ratio tests. Biometrika 98 (4), 2011, 919-934 mehr… Volltext ( DOI )
  • Finegold, Michael; Drton, Mathias: Robust graphical modeling of gene networks using classical and alternative t-distributions. The Annals of Applied Statistics 5 (2A), 2011, 1057-1080 mehr… Volltext ( DOI )

2010

  • Drton, Mathias; Klivans, Caroline J.: A geometric interpretation of the characteristic polynomial of reflection arrangements. Proceedings of the American Mathematical Society 138 (08), 2010, 2873-2887 mehr… Volltext ( DOI )
  • Drton, Mathias; Xiao, Han: Finiteness of small factor analysis models. Annals of the Institute of Statistical Mathematics 62 (4), 2010, 775-783 mehr… Volltext ( DOI )
  • Drton, Mathias; Xiao, Han: Smoothness of Gaussian Conditional Independence Models. Algebraic Methods in Statistics and Probability II (Contemporary Mathematics) 516, 2010, 155-177 mehr… Volltext ( DOI )
  • Drton, Mathias; Yu, Josephine: On a Parametrization of Positive Semidefinite Matrices with Zeros. SIAM Journal on Matrix Analysis and Applications 31 (5), 2010, 2665-2680 mehr… Volltext ( DOI )
  • Foygel, Rina; Drton, Mathias: Extended Bayesian Information Criteria for Gaussian Graphical Models. Advances in Neural Information Processing Systems 22 (NIPS 2010) 23, 2010, 2020-2028 mehr…

2009

  • Drton, Mathias: Likelihood ratio tests and singularities. The Annals of Statistics 37 (2), 2009, 979-1012 mehr… Volltext ( DOI )
  • Drton, Mathias: Discrete chain graph models. Bernoulli 15 (3), 2009, 736-753 mehr… Volltext ( DOI )
  • Drton, Mathias, Eichler, Michael, Richardson, Thomas S.: Computing Maximum Likelihood Estimates in Recursive Linear Models with Correlated Errors. Journal of Machine Learning Research 10, 2009, 2329-2348 mehr…
  • Finegold, Michael A.; Drton, Mathias: Robust graphical modeling with t-distributions. UAI '09 (Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence), 2009, 169–176 mehr… Volltext ( DOI )

2008

  • Drton, Mathias: Multiple solutions to the likelihood equations in the Behrens–Fisher problem. Statistics & Probability Letters 78 (18), 2008, 3288-3293 mehr… Volltext ( DOI )
  • Drton, Mathias: Iterative Conditional Fitting for Discrete Chain Graph Models. In: Brito, Paula (Hrsg.): COMPSTAT 2008. Physica-Verlag HD, 2008, 93-104 mehr… Volltext ( DOI )
  • Drton, Mathias; Massam, Hélène; Olkin, Ingram: Moments of minors of Wishart matrices. The Annals of Statistics 36 (5), 2008, 2261-2283 mehr… Volltext ( DOI )
  • Drton, Mathias; Perlman, Michael D.: A SINful approach to Gaussian graphical model selection. Journal of Statistical Planning and Inference 138 (4), 2008, 1179-1200 mehr… Volltext ( DOI )
  • Drton, Mathias; Richardson, Thomas S.: Binary models for marginal independence. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 70 (2), 2008, 287-309 mehr… Volltext ( DOI )
  • Drton, Mathias; Richardson, Thomas S.: Graphical Methods for Efficient Likelihood Inference in Gaussian Covariance Models. Journal of Machine Learning Research 9, 2008, 893-914 mehr… Volltext (mediaTUM)

2007

  • Beerenwinkel, N.; Drton, M.: A mutagenetic tree hidden Markov model for longitudinal clonal HIV sequence data. Biostatistics 8 (1), 2007, 53-71 mehr… Volltext ( DOI )
  • Chaudhuri, S.; Drton, M.; Richardson, T. S.: Estimation of a covariance matrix with zeros. Biometrika 94 (1), 2007, 199-216 mehr… Volltext ( DOI )
  • Drton, Mathias ; Sullivant, Seth: Algebraic statistical models. Statistica Sinica 17 (4), 2007, 1273-1297 mehr…
  • Drton, Mathias; Perlman, Michael D.: Multiple Testing and Error Control in Gaussian Graphical Model Selection. Statistical Science 22 (3), 2007, 430-449 mehr… Volltext ( DOI )

2006

  • Drton, Mathias: Algebraic Techniques for Gaussian Models. Proceedings of Prague Stochastics 2006, 2006, 91-90 mehr…
  • Drton, Mathias: Computing all roots of the likelihood equations of seemingly unrelated regressions. Journal of Symbolic Computation 41 (2), 2006, 245-254 mehr… Volltext ( DOI )
  • Drton, Mathias; Andersson, Steen A.; Perlman, Michael D.: Conditional independence models for seemingly unrelated regressions with incomplete data. Journal of Multivariate Analysis 97 (2), 2006, 385-411 mehr… Volltext ( DOI )
  • Drton, Mathias; Eichler, Michael: Maximum Likelihood Estimation in Gaussian Chain Graph Models under the Alternative Markov Property. Scandinavian Journal of Statistics 33 (2), 2006, 247-257 mehr… Volltext ( DOI )
  • Drton, Mathias; Sturmfels, Bernd; Sullivant, Seth: Algebraic factor analysis: tetrads, pentads and beyond. Probability Theory and Related Fields 138 (3-4), 2006, 463-493 mehr… Volltext ( DOI )
  • Schwingenschlögl, Udo; Drton, Mathias: Seat excess variances of apportionment methods for proportional representation. Statistics & Probability Letters 76 (16), 2006, 1723-1730 mehr… Volltext ( DOI )

2005

  • Beerenwinkel, Niko; Drton, Mathias: Mutagenetic Tree Models – 14. In: Pachter, L.; Sturmfels, B. (Hrsg.): Algebraic Statistics for Computational Biology. Cambridge University Press, 2005, 278-290 mehr… Volltext ( DOI )
  • Drton, Mathias; Eriksson, Nicholas; Leung, Garmay: Ultra-Conserved Elements in Vertebrate and Fly Genomes – 22. In: Pachter, L.; Sturmfels, B. (Hrsg.): Algebraic Statistics for Computational Biology. Cambridge University Press, 2005, 387-402 mehr… Volltext ( DOI )
  • Drton, Mathias; Schwingenschlögl, Udo: Asymptotic seat bias formulas. Metrika 62 (1), 2005, 23-31 mehr… Volltext ( DOI )

2004

  • Drton, M.; Richardson, T.S.: Multimodality of the likelihood in the bivariate seemingly unrelated regressions model. Biometrika 91 (2), 2004, 383-392 mehr… Volltext ( DOI )
  • Drton, Mathias; Perlman, Michael D.: Model selection for Gaussian concentration graphs. Biometrika 91 (3), 2004, 591-602 mehr… Volltext ( DOI )
  • Drton, Mathias; Richardson, Thomas S.: Iterative conditional fitting for Gaussian ancestral graph models. Proceedings of the 20th conference on Uncertainty in artificial intelligence (UAI-04), 2004, 130–137 mehr…
  • Drton, Mathias; Schwingenschlögl, Udo: Surface volumes of rounding polytopes. Linear Algebra and its Applications 378, 2004, 71-91 mehr… Volltext ( DOI )
  • Schwingenschlögl, Udo; Drton, Mathias: Seat allocation distributions and seat biases of stationary apportionment methods for proportional representation. Metrika 60 (2), 2004, 191-202 mehr… Volltext ( DOI )
  • Silkes, JoAnn P.; McNeil, Malcolm R.; Drton, Mathias: Simulation of Aphasic Naming Performance in Non-Brain-Damaged Adults. Journal of Speech, Language, and Hearing Research 47 (3), 2004, 610-623 mehr… Volltext ( DOI )

2003

  • Drton, Mathias; Marzban, Caren; Guttorp, Peter; Schaefer, Joseph T.: A Markov Chain Model of Tornadic Activity. Monthly Weather Review 131 (12), 2003, 2941-2953 mehr… Volltext ( DOI )
  • Drton, Mathias; Richardson, Thomas S.: A New Algorithm for Maximum Likelihood Estimation in Gaussian Graphical Models for Marginal Independence. Proceedings of the 19th Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-03), 2003, 184-191 mehr…
  • Schuster, Karsten; Pukelsheim, Friedrich; Drton, Mathias; Draper, Norman R.: Seat biases of apportionment methods for proportional representation. Electoral Studies 22 (4), 2003, 651-676 mehr… Volltext ( DOI )

R packages

ggm R package for graphical modeling

SEMID R package for parameter identification in linear structural equation models (with Rina Barber, Luca Weihs).

sBIC R package for the singular Bayesian information criterion (Luca Weihs, Martyn Plummer).

TauStar R package for efficient computation of Bergsma and Dassios’ sign covariance (Luca Weihs).

SymRC: R package for computation of measures of dependence (Luca Weihs).

BCD R package for computation of MLE in cyclic structural equation models (Y. Samuel Wang).

highDNG: R package for structure learning in high-dimensional LiNGAM models (Y. Samuel Wang).

A list of previous courses can be found on TUMonline.

Theses

Supervised theses

Suche
Kein Ergebnis

Hinweis: Die „Schnellsuche“ findet nur Text in den angezeigten Feldern; nicht in Abstracts oder Schlagwörtern. Der Suchbegriff muss mindestens 3 Buchstaben lang sein.

2024

  • Kian Saraf-Poor: Canonical Correlation Analysis with Optimal Transport. Masterarbeit, 2024 mehr…
  • Richard Schwank: Robust Score Matching for Graphical Models. Masterarbeit, 2024 mehr…
  • Shuai Wang: Learning Polytree Models with Hidden Variables. Masterarbeit, 2024 mehr…
  • Yurou Liang: Differentiable Learning of Non-Linear Directed Graphical Models. Masterarbeit, 2024 mehr…

2023

  • Binlan Wu: Graphical Modelling of Spinal Cord Injury Co-morbidities. , 2023 mehr…
  • Daniel Spannagel : Rejection Sampling for an Extended Gamma Distribution. Bachelorarbeit, 2023 mehr…
  • Javier Yraola Meins: Divergence of Maximum Likelihood Estimation in Structural Equation Models. Bachelorarbeit, 2023 mehr…
  • Marvin Sylejmani: Partial Homoscedasticity in Graphical Models. Masterarbeit, 2023 mehr…
  • Moritz Ebert: Causal Structure Learning for Renewable Energy Time Series Data. Masterarbeit, 2023 mehr…
  • Nóra Mariann Szekeres: Graphical Continuous Lyapunov Models with Unknown Volatility. Masterarbeit, 2023 mehr…
  • Patrick Ruang Schmidhalter: Undirected Structures in Graphical Continuous Lyapunov Models. Masterarbeit, 2023 mehr…
  • Pia Ehlers: Regularized Rank Regression for Transformation Models. Masterarbeit, 2023 mehr…
  • Rahul Radhakrishnan: Learning Graphical Lyapunov Models using Best-subset Selection Methods. Masterarbeit, 2023 mehr…
  • Ruixuan Zhu: Applying double machine learning and BART methods to the American Causal Inference Conference 2022 Data Challenge. Masterarbeit, 2023 mehr…
  • Sarah Lumpp: Conditional Independence in Graphical Continuous Lyapunov Models. Masterarbeit, 2023 mehr…
  • Yuki Suzuki: Robustifying score matching for graphical models - Robust Score matching Methode für Grafische Modelle. Masterarbeit, 2023 mehr…

2022

  • Dafni Kitrilaki: Optimal experimental design for causal discovery. Masterarbeit, 2022 mehr…
  • Daniela Schkoda: Goodness-of-fit tests for non-Gaussian linear causal models. Masterarbeit, 2022 mehr…
  • Grigor Keropyan : Post-Nonlinear Gaussian Causal Models. Masterarbeit, 2022 mehr…
  • Jannik Nettelnstroth : Classification of non-linear GNSS jamming signals using machine-learning techniques. Masterarbeit, 2022 mehr…
  • Jiaqi Lu: Credible Intervals for Causal Effects in Linear Causal Models. Masterarbeit, 2022 mehr…
  • Julian Rittmaier: Homogenität von Fehlerkovarianzen. Bachelorarbeit, 2022 mehr…
  • Leonard Waldmann: Computational Study of Equivalence of Graphical Models with Groupwise Equal Error variances. Bachelorarbeit, 2022 mehr…
  • Maresa Schröder: Explanations from the Latent Space: The Need for Latent Feature Saliency Detection in Deep Time Series Classification. Masterarbeit, 2022 mehr…
  • Sebastian Kaiser: Gaussian Graphical Models with Feedback Loops. Masterarbeit, 2022 mehr…
  • Stefan Kienle: Active Bayesian Causal Discovery for Gaussian Process Networks. Masterarbeit, 2022 mehr…
  • Yushu Yang: Graphische Modellierung von Wirkzusammenhängen in Fertigungsprozessen. Bachelorarbeit, 2022 mehr…

2021

  • Matthieu Bulté: Higher-order statistics for high-dimensional problems with applications to graphical models. Masterarbeit, 2021 mehr…
  • Antoine Jeanrenaud: Bivariate causal discovery with non-linear models. Bachelorarbeit, 2021 mehr…
  • Fabian Obster: Statistical modeling of fatalities caused by political violence. Masterarbeit, 2021 mehr…
  • Jan Lukas Rogalka: Model selection with the sBIC. Bachelorarbeit, 2021 mehr…
  • Lukas Dreier: Identifiability of Cyclic Structural Equation Models with Gaussian Homoscedastic Error Terms. Masterarbeit, 2021 mehr…
  • Michal Martonak: Bayesian Modelling of Insurance Risks with Deep Learning. Masterarbeit, 2021 mehr…
  • Nan Yang: Discretization Techniques for Bayesian Networks and their Application to the Production Data of Lithium-ion Batteries. Masterarbeit, 2021 mehr…
  • Nils Sturma : Testing Algebraic Constraints on Statistical Parameters. Masterarbeit, 2021 mehr…
  • Roman Benker: Zeitdiskrete Gleichgewichtsmodelle. Bachelorarbeit, 2021 mehr…
  • Stefan Haffner: Two likelihood-ratio based approaches for interval estimation of causal effects in linear structural equation models. Masterarbeit, 2021 mehr…
  • Tom Hochsprung: Learning sparse Gaussian graphical models with few covariance queries. Masterarbeit, 2021 mehr…

2020

  • Johannes Schmitt: Interventional Causal Structure Learning With Gaussian Process Regression. Masterarbeit, 2020 mehr…
  • Tobias Freidling: Model uncertainty in statistical inference. Masterarbeit, 2020 mehr…
  • Tom Müller: Knockoffs based on high-dimensional mixed graphical models. Masterarbeit, 2020 mehr…

Ongoing theses

  • Boris Scherer: Robust graphical modeling with t-distributions (Mathias Drton; Daniele Tramontano)
  • Nisrina-Afnan Walyadin : Learning Latent Polytrees with Linear non-Gaussian Models (Mathias Drton; Daniele Tramontano)
  • Carolina Kornitzer: Dimension of Sparse Factor Analysis Models (Mathias Drton; Nils Sturma)
  • Marel Zafiriadis: The Algebraic Geometry of Unfaithful Distributions in Undirected Gaussian Graphical Models (Mathias Drton; Benjamin Hollering)
  • Tamara Rossol: Statistical inference on causal effects in the cross-moment approach (Mathias Drton; DanieleTramontano)
  • Hannah Göbel: Learning the Linear Relations of Undirected Gaussian Graphical Models with Symmetries (Mathias Drton; Pratik Misra)
  • Eva Resch: Graphical Lyapunov models for interventional data (Mathias Drton; Daniela Schkoda)
  • Melanie Hug: Estimation in linear non-Gaussian causal models under general confounding (Mathias Drton; Daniele Tramontano)
  • Nele Elisabeth Jürgensen: Goodness-of-fit tests for linear causal models via symmetry conditions on tensors (Mathias Drton; Daniela Schkoda)
  • Fabian Bleile: Marginal Independence in Causal Modeling with Stationary Diffusions (Mathias Drton; SarahLumpp)