Prof. Dr. Eva Viehmann
Dr. Paul Ziegler

Introduction to Algebraic Number Theory Sheet 3

Exercise 1. Show that $x^{2}-10 y^{2}= \pm 2$ has no solutions in \mathbb{Z}. Deduce that if α divides both 2 and $\sqrt{10}$ in $\mathbb{Z}[\sqrt{10}]$, then α is a unit. Show however that one cannot write $1=2 \beta+\sqrt{10} \gamma$ with $\beta, \gamma \in \mathbb{Z}[\sqrt{10}]$.

Exercise 2. Let $K=\mathbb{Q}(\alpha)$ be a number field of degree $n=[K: \mathbb{Q}]$ and $f \in \mathbb{Z}[X]$ the minimal polynomial of α. Show that

$$
d\left(1, \alpha, \ldots, \alpha^{n-1}\right)=(-1)^{\frac{n(n-1)}{2}} N_{K / \mathbb{Q}}\left(f^{\prime}(\alpha)\right)
$$

Exercise 3. Prove Stickelberger's Theorem: The discriminant d_{K} of a number field K satisfies

$$
d_{K} \equiv 0,1 \quad(\bmod 4)
$$

Hint: For an integral basis v_{1}, \ldots, v_{n} of \mathcal{O}_{K} consider the expansion of the determinant of $\left(\sigma_{i}\left(v_{j}\right)\right)_{i j}$ as a sum over permutations of $\{1, \ldots, n\}$. Write P for the sum of those terms which occur with positive sign and N for the sum of those terms which occur with negative sign, so that $\operatorname{det}\left(\sigma_{i}\left(v_{j}\right)\right)=P-N$. Show that $P+N$ and $P N$ are both invariant by $\operatorname{Gal}(K / \mathbb{Q})$ and hence are in \mathbb{Z}.

