Technische Universität München Zentrum Mathematik

Prof. Dr. Eva Viehmann Dr. Shinan Liu

Algebraic Geometry

To be handed in Feburary 6, before the lecture.

Exercise 1. Let k be a field of characteristic 0. Compute the regular locus of

$$X = V((y-1)(x^2 + y^2 - z^3)) \subseteq \mathbb{A}^3_k.$$

Exercise 2. Show that the following are non-smooth maps between regular schemes:

- 1. $\operatorname{Spec}\mathbb{Z}[x]/x^2 + 1 \to \operatorname{Spec}\mathbb{Z}$
- 2. $\mathbb{A}^1 \to \mathbb{A}^2, x \mapsto (x, 0)$

Exercise 3. Let k be a field such that $\operatorname{char}(k) \neq 2$. Let f(x) be an element of k[x] which is not a squee. Set $X = \operatorname{Speck}[x, y]/y^2 - f(x)$.

- 1. Show that X is geometric integral. Show that X is smooth over k (and in particular normal) outside the finite k-scheme $V(y) \cap X$.
- 2. Show that X is normal if and only if f is square free.
- 3. Determine the normalization of X.

Complementary exercise. Let A be a discrete valuation ring, and $\pi \in A$ a uniformizer. (One may take as example $A = \mathbb{Z}_p$ and $\pi = p$.) Let $f(x) \in A[x]$ be an *Eisenstein* polynomial, i.e. $f(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0$ such that $a_i \in \pi A$ for all i, and $a_0 \notin \pi^2 A$. Show that A[x]/f is a discrete valuation ring.

In case of questions please send us an email or contact us before or after the seminar/problem session. Eva Viehmann: viehmann@ma.tum.de Shinan Liu: liush@ma.tum.de