Technische Universität München Zentrum Mathematik

Prof. Dr. Eva Viehmann Dr. Shinan Liu

Algebraic Geometry

To be handed in January 30, before the lecture.

Exercise 1. Let k be a field and $G = \operatorname{GL}_{n,k} \subseteq \mathbb{A}_k^{n^2}$ the open subscheme $D(\det)$. Let e be the unit matrix.

- 1. Show that we can identify $T_e G$ with k^{n^2} , viewed as the set of $n \times n$ -matrices over k.
- 2. Let $m: G \times G \to G$ be the multiplication map. Show that $dm_{(e,e)}: T_eG \times T_eG \to T_eG$ is given by $(v, w) \mapsto v + w$.
- 3. Show that $d\det_e : k^{n^2} \to k$ induced by $\det : G \to \operatorname{GL}_{1,k}$ is the trace map.

Exercise 2. Let R be an algebra over a field k and let M be an R-module. Then a map $\delta : R \to M$ is a derivation if δ is additive and for all $x, y \in R$ we have

$$\delta(xy) = x\delta(y) + y\delta(x).$$

Let X be a k-scheme and $x \in X$ a closed point with $\kappa(x) = k$. View $\kappa(x)$ as an $\mathcal{O}_{X,x}$ -module via the projection $\mathcal{O}_{X,x} \to \kappa(x)$. Show that there is a canonical isomorphism

{ derivations
$$\delta : \mathcal{O}_{X,x} \to \kappa(x)$$
} $\cong T_x X$.

Exercise 3. Let K/k be a finite extension of fields. Let $X = \operatorname{Spec} K$ and consider X as a k-scheme. Let $x : \operatorname{Spec} K \to X$ be the identity map. Show that $T_x X = 0$, but $T_x(X/k) = 0$ if and only if K/k is separable.

Exercise 4. Let k_0 be a field of characteristic p > 0 and let $k = k_0(t)$. Let $X = V(y^2 - x^p + t) \subseteq \mathbb{A}_k^2 = \operatorname{Speck}[x, y]$. Show that every local ring of X is a regular local ring, but that X is not smooth over k.

In case of questions please send us an email or contact us before or after the seminar/problem session. Eva Viehmann: viehmann@ma.tum.de Shinan Liu: liush@ma.tum.de