winter semester 2019/20

Claudia Scheimbauer

LIFTING OF COVERING MAPS

Convention. We write $f: (X, x) \to (Y, y)$ when $f: X \to Y$ is continuous and f(x) = y. This is called a *pointed map*.

Warning. The book [1] always assumes covering maps to be continuous maps between spaces which are path-connected and locally path-connected.

The following proposition is Proposition 1.33 in [2] and Lemma 80.2 in [1].

Proposition. Let $p: (E, e_0) \to (B, b_0)$ be a covering map, X a path-connected and locally path-connected space, and $f: (X, x) \to (B, b_0)$ a continuous map. Then, a lift $\tilde{f}: (X, x) \to (B, b_0)$ exists if and only if $f_*(\pi_1(X, x)) \subseteq p_*(\pi_1(E, e_0))$. If this is the case, then the lift \tilde{f} is unique.

Furthermore, if f is a covering map and B is locally path-connected and then \tilde{f} is a covering map.

Proof. If a lift \tilde{f} exists, then $p \circ \tilde{f} = f$, so $f_* = p_* \tilde{f}_*$, which implies the "only if" statement.

For the converse direction, our strategy is the following. Note that if (X, x) = ([0, 1], 0), then the statement follows from the path lifting lemma. In the general case we use path lifting to define a candidate for \tilde{f} .

Let $y \in X$. Then, since X is path-connected, we can find a path γ_y from x to y. Composing with f we obtain a path $f \circ \gamma_y$ in B starting at $f(x) = b_0$. By the path lifting lemma, there is a unique lift $\widetilde{f\gamma_y}$ of $f \circ \gamma_y$ with $\widetilde{f\gamma_y}(0) = e_0$. Define

$$f(y) \coloneqq f\gamma_y(1).$$

We need to check that

- (1) \tilde{f} is well-defined,
- (2) \tilde{f} is continuous,
- (3) \tilde{f} is unique, and
- (4) if f is a covering map, then \tilde{f} also is.

For (1), we will use the homotopy lifting theorem. We need to show that the definition of \tilde{f} was independent of the choice of the path γ_y . Let α_y be another path from x to y. Then

we can concatenate the images of α_y and γ_y^{-1} under f to obtain a loop $\delta = f \alpha_y * f \gamma_y^{-1}$ in B based at b_0 . Then

$$[\delta] = [f \circ (\alpha_y * \gamma_y^{-1})] = f_*[\alpha_y * \gamma_y^{-1}] \in f_*\pi_1(X, x) \subseteq p_*\pi_1(E, e_0),$$

so there is a loop ε in E based at e_0 such that $[\delta] = p_*[\varepsilon] = [p \circ \varepsilon]$. This in turn implies that there is a path homotopy H in B from δ to $p \circ \varepsilon$. Note that $p \circ \varepsilon$ lifts to the loop ε in E based at e_0 . By the homotopy lifting theorem, there is a lifted homotopy \tilde{H} in E such that $\tilde{H}_1 = \varepsilon$, which is a loop. Therefore \tilde{H}_0 also is a loop and $p \circ \tilde{H}_0 = \delta$. By the uniqueness of path lifting we have that in $[0, \frac{1}{2}]$ the path \tilde{H}_0 runs through $\tilde{f\alpha_y}$ and in $[\frac{1}{2}, 1]$ the path H_0 runs through $\tilde{f\gamma_y^{-1}}$. In particular, at the midpoint $\frac{1}{2}$ they agree, so

$$\widetilde{f\alpha_y}(1) = \widetilde{f\gamma_y}(1).$$

For (2), we will show that for any $y \in X$ and \tilde{U} an open neighborhood of $\tilde{f}(y)$ the inverse image $\tilde{f}^{-1}(\tilde{U})$ contains an open neighborhood V of y. We will use:

- (a) Since p is a local homeomorphism, we can assume (by perhaps shrinking U) that $f|_{\tilde{U}}$ is a homeomorphism onto $U \coloneqq p(\tilde{U})$, which is open in B.
- (b) Since f is continuous, $f^{-1}(U)$ is open and contains y. By the local path-connectedness of X, there is a path-connected open neighborhood V of y with $V \subseteq f^{-1}(U)$.

We claim that $\tilde{f}(V) \subseteq \tilde{U}$. To see this, fix a path γ_y from x to y. For any $y' \in V$, since v is path-connected, we can pick a path $\eta_{y'}$ from y to y' in V. Then $\gamma_{y'} = \gamma_y * \eta_{y'}$ is a path from x to y', so we can use it to evaluate \tilde{f} at y'. We pick a lift $\tilde{f} \circ \gamma_y$ of $f \circ \gamma_y$ starting at e_0 . A lift of $f \circ \eta_{y'}$ starting at $\tilde{f} \circ \gamma_y(1)$ is given by $(p|_{\tilde{U}})^{-1} \circ f \circ \eta_{y'}$ because $p|_{\tilde{U}}$ is a homeomorphism. So

$$\tilde{f}(y') = \widetilde{f \circ \eta_y}(1) = (p|_{\tilde{U}})^{-1} \circ f \circ \eta_{y'}(1) \in \tilde{U}.$$

You can also see directly that $\tilde{f}|_V = (p|_{\tilde{U}})^{-1} \circ f$, so \tilde{f} is continuous in V, and the collection of such V's cover X.

For (3), the uniqueness follows from the uniqueness of lifts of paths.

For (4), let $e \in E$. Consider the open set \tilde{U} from (a). Then $p(e) \in B$, so since f is a covering space, there is a trivializing open neighborhood V in B such that

$$f^{-1}(V) \xrightarrow{\cong} V \times f^{-1}(p(e))$$

$$\downarrow^{f|_V}_{V} \xrightarrow{pr_1}$$

commutes. Set $W \coloneqq V \cap p(\tilde{U})$. We further assume (by possibly shrinking) that W is path-connected. Then $(\tilde{f})^{-1}(p^{-1}(W)) = f^{-1}(W)$ and we claim that $\tilde{W} \coloneqq p^{-1}(W) \cap \tilde{U}$ is a trivializing open neighborhood for \tilde{f} . Note that p restricts to a homeomorphism from \tilde{W} onto W. The claim follows from chasing through details in the following diagram:

The two dashed arrows are part of the trivializing diagram for f, and the third one is the composition of: the lowest horizontal arrow, the curved lower right arrow, the projection onto W and then the curved vertical arrow to W.

Definition. A covering space $p: E \to B$ for which E is simply connected is called a *universal* cover of B.

However, it is only "universal" (meaning that it has a universal property), if B is locally path-connected and path connected.

Corollary. Let $p: E \to B$ be a universal cover of a locally path-connected and path-connected base B. Then if $p': E' \to B$ is any other cover, where E' is path-connected, then there is a unique map of covering spaces $f: E \to E'$,

In particular, the universal covering is unique up to isomorphism of covering spaces.

We also need to add "locally path-connected" to the Theorem relating deck transformations and the fundamental group.

Theorem. Let $p: E \to B$ be a universal covering, where E is locally path-connected, and let $p(e_0) = b_0$. Then

$$\operatorname{Aut}(p) \cong \pi_1(B, b_0).$$

References

- [1] James R. Munkres. Topology. Prentice Hall, Inc., Upper Saddle River, NJ, 2000. Second edition of [MR0464128].
- [2] Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002. available at https://pi. math.cornell.edu/~hatcher/AT/AT.pdf.