summer semester 2020

Advanced Topics in Algebraic Topology — Exercise Sheet 3

Exercise class: Friday, 15th of May, 11-12

Website with further material, including exercise sheets: https://www.groups.ma.tum.de/algebra/scheimbauer/advanced-topics-in-algebraic-topology/

Exercise 1 (snake lemma). Consider the commutative solid diagram

(of modules over some ring) and assume that both rows are exact. Show that it induces a "long" exact sequence:

$$0 \xrightarrow{f} \ker b \xrightarrow{g} \ker c \xrightarrow{g} \ker c \xrightarrow{g} \ker c \xrightarrow{g'} \operatorname{coker} a \xrightarrow{f'} \operatorname{coker} b \xrightarrow{g'} \operatorname{coker} c \xrightarrow{g'} 0$$

$$(2)$$

If the rows in the original diagram (1) are exact also with the dashed arrows, then the same is true for the long exact sequence (2).

Exercise 2. (long exact sequence in (co)homology) Let

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0 \tag{3}$$

be a short exact sequence of cochain complexes (of modules over some ring). Use the snake lemma to construct the long exact sequence of cohomology which looks as follows:

Exercise 3. (Mayer-Vietoris sequence) Let U and V be open subsets of some manifold. Use Exercise 2 to construct the so called Mayer-Vietoris long exact sequence in de Rham cohomology:

$$\cdots \longrightarrow \mathrm{H}^*_{\mathrm{dR}}(U \cup V) \longrightarrow \mathrm{H}^*_{\mathrm{dR}}(U) \oplus \mathrm{H}^*_{\mathrm{dR}}(V) \longrightarrow \mathrm{H}^*_{\mathrm{dR}}(U \cap V) \longrightarrow \partial$$

$$(5)$$

$$\longrightarrow \mathrm{H}^{*+1}_{\mathrm{dR}}(U \cup V) \longrightarrow \mathrm{H}^{*+1}_{\mathrm{dR}}(U) \oplus \mathrm{H}^{*+1}_{\mathrm{dR}}(V) \longrightarrow \mathrm{H}^{*+1}_{\mathrm{dR}}(U \cap V) \longrightarrow \cdots$$

Give an explicit description of the connecting map $\partial \colon \mathrm{H}^*_{\mathrm{dR}}(U \cap V) \to \mathrm{H}^{*+1}_{\mathrm{dR}}(U \cup V).$

Exercise 4. Use the Mayer-Vietoris sequence to compute the de Rham cohomology $H^*_{dR}(S^1)$ of the circle. Provide an explicit basis!

Exercise 5. Follow in the footsteps of the previous exercises to construct a Mayer-Vietoris sequence for de Rham cohomology with compact support. Use it to explicitly compute the de Rham cohomology with compact support of S^1 .